

VIENNA, 10-12 NOVEMBER 2015

The Web Mercator Projection: A Cartographic Analysis

İbrahim Öztuğ Bildirici

Selcuk University Konya, Turkey

bildirici@selcuk.edu.tr

Introduction

- Web-based mapping services are using a modified version of Mercator Projection that is called Web Mercator.
- The WGS84 ellipsoid is transformed to the map by using spherical projection equations.
- The resulting projection is no more conformal.
 - Neither Mercator nor the Web Mercator is not suitable for portraying the whole earth.

Map Projection

• A transformation from the reference surface to the map (Forward Transformation) $x = x(\omega, \lambda)$

$$y = y(\varphi, \lambda)$$

- Reference surface: Ellipsoid or sphere
- Inverse transformation (from the map to the reference surface)

$$\varphi = \varphi(x, y)$$
$$\lambda = \lambda(x, y)$$

Cylindrical Projections

Sphere

•The rectangular earth in cylindrical projection enables a suitable coordinate system.

 High distortion occurs towards poles!

 A conformal projection is required to portray the objects of the real world similarly.

• This is important when presenting man-made objects such as buildings in aerial imagery.

Mercator

- One of the well-known projections
- Cylindrical and conformal.
- Rhumb lines are depicted as straight lines.
- One or two standard parallels
- areas towards poles are distorted too much.
 - At 60° latitude areas are 4 times exaggerated.
- Polar areas can not be shown.
- Widely used.

Forward transformation:

 $x = R\lambda$ $y = R\ln \tan\left(\frac{\pi}{4} + \frac{\varphi}{2}\right)$

Spherical

One standard parallel

Linear distortion:

$$m = \frac{1}{\cos \varphi}$$

Forward transformation:

 $x = a\lambda$

$$y = a \ln \tan \left(\frac{\pi}{4} + \frac{\varphi}{2}\right) \left(\frac{1 - e \sin \varphi}{1 + e \sin \varphi}\right)^{\frac{e}{2}}$$

Ellipsoidal

One standard parallel

• Linear distortion:

$$m = \frac{a}{N\cos\varphi}$$

Web Mercator

•WGS84 ellipsoid is transformed to the map plane with spherical equations.

No more conformal

 $x = a\lambda$

$$y = a \ln \tan \left(\frac{\pi}{4} + \frac{\varphi}{2}\right) \left(\frac{1}{1}\right)^{\frac{1}{2}}$$

$$x = a\lambda$$
$$y = a\ln \tan\left(\frac{\pi}{4} + \frac{\varphi}{2}\right)$$

$$x = \frac{128}{\pi} 2^n \left(\lambda + \pi\right)$$
$$y = \frac{128}{\pi} 2^n \left(\pi - \ln \tan\left(\frac{\pi}{4} + \frac{\varphi}{2}\right)\right)$$

Coordinate system is shifted and scaled!

setting
$$y = 0, n = 0$$

$$\ln \tan \left(\frac{\pi}{4} + \frac{\varphi_{\max}}{2}\right) = \pi$$

$$\varphi_{\max} = 2 \arctan e^{\pi} - \frac{\pi}{2} = \pm 85.05129^{\circ}$$

- The web mapping services use zoom levels up to 18.
- The spatial resolution of 1 pixel ranges from 156 km at zoom level 0 to 0.60 m at zoom level 18.

$$1 pixel = \frac{\pi a}{2^{n+7}} meters$$

Inverse Transformation

$$\varphi = 2\arctan e^{\pi - \frac{\pi y}{2^{n+7}}} - \frac{\pi}{2}$$

$$\lambda = \frac{\pi x}{2^{n+7}} - \pi$$

Projection Distortions

For this purpose metric projection equations should be used.

 $x = a\lambda$

$$y = a \ln \tan\left(\frac{\pi}{4} + \frac{\varphi}{2}\right)$$

• Distortions along meridians and parallels:

$$h = \frac{1}{M} \frac{dy}{d\varphi} = \frac{a}{M \cos \varphi}$$
$$k = \frac{1}{N \cos \varphi} \frac{dx}{d\lambda} = \frac{a}{N \cos \varphi}$$

Distortions

φ	h	k	р	ω
0°	1.006739	1.000000	1.006739	11' 32.7"
10°	1.021961	1.015324	1.037621	11' 11.9"
20°	1.070092	1.063761	1.138322	10' 11.9"
30°	1.159566	1.153734	1.337830	8' 40.0"
40°	1.308756	1.303601	1.706096	6' 47.1"
50°	1.556989	1.552665	2.417482	4' 46.8"
60°	1.998334	1.994973	3.986623	2' 53.6"
70°	2.917448	2.915150	8.504798	1' 21.3"
80°	5.741212	5.740046	32.95482	0' 21.0"
85°	11.43612	11.43554	130.7782	0' 5.3"

1° Meridian Arc Comparison

Latitude	WGS84 (m)	Web M. (m)	Mercator (m)	Difference (WM-M) (m)
0°	110574.389	111325.1	111312.0	13.1
10°	110611.187	113216.8	112942.0	274.8
20°	110710.615	118847.7	118310.8	536.8
30°	110860.926	129199.3	128396.9	802.4
40°	111044.261	146399.4	145318.3	1081.1
50°	111238.681	175017.9	173620.6	1397.2
60°	111420.728	226085.3	224268.1	1817.2
70°	111568.259	333556.5	330999.0	2557.5
80°	111663.201	675090.0	670299.7	4790.3
85°	111687.001	1424698.4	1414946.5	9751.9

An Alternative: Virtual Globe

- Polar areas can be mapped
- Less, or no distortions (depending on the view point)
- Great circles are represented correctly.

© 2015 Google Image Landsat Data SIO, NOAA, U.S. Navy, NGA, GEBCO US Dept of State Geographer

Görüntü Tarihi: 4/10/2013 Enlem 39.898498° Boylam -21.230041° yükseklik -4358 m göz hizası 6852.44 km 💽

Google earth

Conclusions

- Despite being unsuitable in terms of map projection distortions, Web Mercator Projection is beneficial in terms of computer graphics and tiling system.
- The graticule appears rectangular that matches the Cartesian coordinates on the map plane.
- Virtual globe representations are another way of web-based visualization.
- Google supported earth view in the previous version of Google Maps API, and later launched Google Earth API. Both are deprecated now.
 - Since globe representation is a 3D visualization not affected by map projection distortions, their use is beneficial together with 2D map.
- Such possibilities can help map users to understand changes in geometry caused by map projection.

Thank you for your attention!

bildirici@selcuk.edu.tr

iobildirici@yahoo.com