The GEOTHNK Approach to Spatial Thinking

Marinos Kavouras, Margarita Kokla, Eleni Tomai*
National Technical University of Athens

EUROCARTO
November 10-12, 2015, Vienna, AUSTRIA

With the support of the Lifelong Learning Programme of the European Union
Pr No 543451-LLP-1-2013-1-GR-KA3-KA3MP

http://www.geothnk.eu
GEOTHNK: Semantic pathways for building a spatially-thinking society

- Online repository and authoring environment for the collection, creation, and sharing of educational resources that **cultivate spatial thinking skills through different disciplines and educational contexts**.

- **Supports:**
 - access to various resources and educational scenarios
 - creation of new educational scenarios through an authoring environment
 - semantic association and exploration of knowledge and resources
 - geographic and semantic visualization of educational scenarios
Consortium

<table>
<thead>
<tr>
<th>National Technical University of Athens</th>
<th>Ellinogermaniki Agogi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Address</td>
</tr>
<tr>
<td>Heroon Polytechni, 9,</td>
<td>Dimitriou Panagea Str.</td>
</tr>
<tr>
<td>15780, Zografou, Athens</td>
<td>GR 153 51 Pallini Attikis</td>
</tr>
<tr>
<td>GREECE</td>
<td>GREECE</td>
</tr>
<tr>
<td>Contact Details</td>
<td>Contact Details</td>
</tr>
<tr>
<td>Prof. Marinos Kavouras</td>
<td>Dr. Angelos Lazoudis</td>
</tr>
<tr>
<td>mkav@survey.ntua.gr</td>
<td>angelos@ea.gr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTRASOFT International S.A.</th>
<th>Association of Geographic Information Laboratories of Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Address</td>
</tr>
<tr>
<td>S.A. 2b, rue Nicolas Bové L-1253</td>
<td>Heidelberglaan 2, 3584CS, Utrecht</td>
</tr>
<tr>
<td>LUXEMBOURG</td>
<td>NETHERLANDS</td>
</tr>
<tr>
<td>Contact Details</td>
<td>Contact Details</td>
</tr>
<tr>
<td>Irene MATZAKOU</td>
<td>Prof. Michael Jackson</td>
</tr>
<tr>
<td>irene.matzakou@intrasoft-intl.com</td>
<td>mike.jackson@nottingham.ac.uk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Casa Corpului Didactic Cluj</th>
<th>Konstantin Preslavsky University of Shumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Address</td>
</tr>
<tr>
<td>str. Septimeu Albini nr. 91</td>
<td>115, Universiteitska St, 9700 Shumen</td>
</tr>
<tr>
<td>ROMANIA</td>
<td>BULGARIA</td>
</tr>
<tr>
<td>Contact Details</td>
<td>Contact Details</td>
</tr>
<tr>
<td>Ms. Dorina Kudor</td>
<td>Prof. Margarta Hristova-Plashilka</td>
</tr>
<tr>
<td>dorinakudor@yahoo.com</td>
<td>rector@shu-bg.net</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bundesministerium fuer Bildung und Frauen</th>
<th>Stichting GeoFort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Address</td>
</tr>
<tr>
<td>BMBF - Federal Ministry of Education and Women’s Affairs, Minoritenplatz 5, 1014 Vienna</td>
<td>Nieuwe Steeg 74, 4171KG Herwijnen</td>
</tr>
<tr>
<td>AUSTRIA</td>
<td>NETHERLANDS</td>
</tr>
<tr>
<td>Contact Details</td>
<td>Contact Details</td>
</tr>
<tr>
<td>Mr. Reinhold Hawle</td>
<td>Dr. Tabitha van den Ende</td>
</tr>
<tr>
<td>reinhold.hawle@bmbf.gv.at</td>
<td>tabitha@geofort.nl</td>
</tr>
</tbody>
</table>
Target groups and educational contexts

- **Target groups:**
 - Teachers
 - University students
 - Science center educators
 - Adult learners

- **Levels of education**
 - Schools (primary and secondary)
 - Higher Education
 - Adult education

- **Educational environments**
 - Formal (school and university)
 - Informal (science center / museum)

- **Languages**
 - English
 - Bulgarian
 - Dutch
 - German
 - Greek
 - Romanian
Resources

- Educational objects: individual, reusable digital units such as text, images, maps, websites, and interactive and multimedia materials.

- Educational scenarios: describe a whole lesson plan or any other formal or informal activity using the inquiry-based educational model
 - pre-structured template mainly for formal activities
 - open template mainly for informal activities
What is spatial thinking?

- not a single ability

- a **blending of knowledge and skills**

- supports people in identifying, interpreting, and visualising location, distance, relationships, movement, change, patterns, and trends through space.

- **can be cultivated** with substantial results
Importance of spatial thinking (Sinton et al., 2013)

- a **horizontal thread across the curriculum** (learning to understand and practice spatial thinking in all school subjects) and
- a **vertical thread through the curriculum** (from kindergarten through college)
Spatial thinking is a synthesis of 3 components: concepts, representation tools, and reasoning processes (National Research Council, 2006).

- **Implementation**: users are prompted to enrich their educational scenarios with concepts, representation tools, and reasoning tools

- **Objective**: cultivate all 3 components of spatial thinking
1. GEOTHNK concepts

- **342 concepts** defined by the consortium based on the analysis of:
 - TeachSpatial
 - Schools Online Thesaurus (ScOT)
 - Canadian National Standards for Geography
 - Geography and Mathematics Dictionary and Glossary for students (ITS Asia)
 - Open Discovery Space (ODS) Vocabulary
1. GEOTHNK concepts

- Each concept is described by:
 - a term
 - a definition (from WordNet)
 - links to useful online resources (770 in total collected by the consortium)
2. Representation tools

- Links to **55 online representation tools** (added by the consortium)

- Types:
 - maps, map viewers, and map making,
 - country maps,
 - atlases,
 - historical maps,
 - virtual globes,
 - satellite and areal imagery,
 - data visualizations,
 - models

- Example: [Geogebra: Interactive 2D and 3D geometry models](#)
3. Reasoning tools

- Any kind of tool (educational game, learning activity, interactive application, etc.) that may facilitate the understanding of a concept or scenario and prompt reasoning processes.

- Due to being scenario-specific, are added by users.

- Examples:
 - Mercator puzzle
 - Layers of the atmosphere virtual lab
 - ArcGIS (Trial Edition)
 - Geocaching: GPS-based hunt game
4. Instances – geographic representation of educational scenarios

- **Thousands of instances** linked to concepts are dynamically drawn from the GeoNames Geographical Database.
- **Support:**
 - the visualization of educational scenarios in geographic space
 - an additional search mechanism, i.e., the map-based search: the user interacts with the map to select geo-instances of interest
2nd underlying idea regarding spatial thinking

Spatial thinking is a multi-dimensional, transversal ability that cross-cuts several subjects and grade levels.

- **Implementation**: multidisciplinary organization and semantic association of knowledge
- **Objective**: cultivate spatial thinking through different subjects, at different stages of education.
Semantic network: semantic representation and association of educational scenarios

- 342 concepts and 802 taxonomic relations
- Translated into 5 languages with a semi-automatic approach employing BabelNet and manual translations
- Supports:
 - efficient search and retrieval of educational material
 - creation of educational scenarios
 - semantic – visual representation of educational scenarios
First World War: the conflict of ideologies
Crowdsourcing results

- Users contribute to the repository by:
 - creating new educational objects or scenarios,
 - reusing educational scenarios developed by other users,
 - tagging educational resources, and
 - creating new reasoning tools.
- 656 registered members
- 413 featured resources (143 educational objects and 270 educational scenarios)
- 68 reasoning tools
- >4000 tags added on resources
GEOTHNK resources and education levels

<table>
<thead>
<tr>
<th>Education level</th>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Education</td>
<td>116</td>
</tr>
<tr>
<td>Secondary Education</td>
<td>291</td>
</tr>
<tr>
<td>Higher Education</td>
<td>69</td>
</tr>
</tbody>
</table>
Primary Education

- Make your own Globe
- Make your own Compass
- Deep Inside The Earth
- Teaching directions - 3rd and 4th grade
- Giving directions: How can I get to.... Map orientation for 5th grade
- Mathematical orientation for 5th grade
- Open Streetmaps: Missing Maps
- World Market Routes game
- Me and my family
- Pyramids
Secondary Education

- Touch the Sun
- The planet's atmosphere
- Milky Way - the backbone of night
- Navigation then and now
- Distances and scales
- From counting pebbles to the GPS
- Towns and villages in Bulgaria - 10 grade
- Map Projections
- Eratosthenes' measurement of the Earth's Circumference
- Volcanoes and Plate tectonics
- Google Earth the Metropolitan cities
- Regular Pyramid
Higher Education

- Representation of data using cartograms
- Perceptual image of an urban environment
- Visualization and Representation of multidimensional data in two-dimensional space
- Winery Sitting
- Hydrological Data Analysis of Thrace's Water Department
- Mapping roads and buildings from satellite data, through the procedures of unsupervised and supervised classification
- Online Analysis of Earth Observation data for Agricultural Applications
- Optical Instruments
GEOTHNK resources and curriculum subjects

<table>
<thead>
<tr>
<th>Curriculum subjects</th>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td>221</td>
</tr>
<tr>
<td>Geography and Earth Science</td>
<td>197</td>
</tr>
<tr>
<td>Environmental Education</td>
<td>41</td>
</tr>
<tr>
<td>Physics</td>
<td>13</td>
</tr>
<tr>
<td>Astronomy</td>
<td>9</td>
</tr>
<tr>
<td>Mathematics</td>
<td>52</td>
</tr>
<tr>
<td>ICT</td>
<td>32</td>
</tr>
<tr>
<td>English teaching</td>
<td>27</td>
</tr>
<tr>
<td>History</td>
<td>25</td>
</tr>
</tbody>
</table>

A closer look on Geography and Earth Science:

- GIS: 19
- Cartography: 9
- Maps & plans: 21
- Spatial Transformations: 6

...and on Mathematics:

- Graphical display of data: 10
- Geometry: 34
- Transformation: 7
20 Most used concepts

<table>
<thead>
<tr>
<th>Concept</th>
<th>Occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>map</td>
<td>109</td>
</tr>
<tr>
<td>location</td>
<td>90</td>
</tr>
<tr>
<td>geography</td>
<td>85</td>
</tr>
<tr>
<td>city</td>
<td>75</td>
</tr>
<tr>
<td>Representation</td>
<td>70</td>
</tr>
<tr>
<td>Spatial Relations</td>
<td>59</td>
</tr>
<tr>
<td>area</td>
<td>54</td>
</tr>
<tr>
<td>distance</td>
<td>52</td>
</tr>
<tr>
<td>Methods and Abilities</td>
<td>51</td>
</tr>
<tr>
<td>island</td>
<td>48</td>
</tr>
<tr>
<td>Fundamental geospatial and geometric concepts</td>
<td>44</td>
</tr>
<tr>
<td>geographic information systems</td>
<td>42</td>
</tr>
<tr>
<td>Geometric Concepts relative to Geospatial Thinking</td>
<td>42</td>
</tr>
<tr>
<td>city</td>
<td>39</td>
</tr>
<tr>
<td>scale</td>
<td>38</td>
</tr>
<tr>
<td>Spatial Relation</td>
<td>38</td>
</tr>
<tr>
<td>time</td>
<td>37</td>
</tr>
<tr>
<td>Physical Systems</td>
<td>36</td>
</tr>
<tr>
<td>mapping</td>
<td>35</td>
</tr>
<tr>
<td>Tools and Applications</td>
<td>35</td>
</tr>
</tbody>
</table>
Conclusions

- Implementation activities are necessary to train users to the GEOTHNK approach

- Target groups have a wide, multidisciplinary conception of spatial thinking; cross-cuts different subjects and levels of education

- Spatial concepts also relate to the international trend and discussion about crosscutting concepts in education

Future steps

- trace spatial thinking across the curriculum

- address the learners – may and how the GEOTHNK approach enhance the spatial thinking skills of learners?

- showcase how crosscutting concepts such as scale, pattern, and system may be explicated using real-case examples from the spatial or geospatial domain
For science center educators, GEOTHNK provides open interfacing solutions to easily prepare learning pathways for their communities, construct their virtual didactic counterparts, and share them with teachers and researchers in the field.

http://www.geothnk.eu