Designing Usable Sequential Color Schemes for Geovisualizations

Sequential Color Scheme Generator 1.0

Alžběta BRYCHTOVÁ

GIScience Center: Geographic Information Visualization and Analysis

Department of Geography, University of Zurich

Basic cartographic rule

shades of sequential schemes on the map must be differentiable

- CIE: metric, that allows to quantify perceived difference between two colors
- ΔE (Empfindung = sensation)
- CIEDE2000 method ($\Delta E_{\rho\rho}$) the most precise, the most complex

$$\Delta E_{00}^* = \sqrt{\left(\frac{\Delta L'}{k_L S_L}\right)^2 + \left(\frac{\Delta C'}{k_C S_C}\right)^2 + \left(\frac{\Delta H'}{k_H S_H}\right)^2 + R_T \frac{\Delta C'}{k_C S_C} \frac{\Delta H'}{k_H S_H}}$$

Here the parameter factors, k_L , k_C and k_H , are correction factors related with observation environment. Lightness, chroma, and hue weighting factors, S_L , S_C and S_H , respectively describe visual perception action on three attributes. Rotation factor R_T is used to correct deflection in the blue region.

$$\Delta E_{00} = 20$$

$$\Delta E_{00} = 2$$

sRGB in RGB

sRGB in LAB

sRGB in LAB

- has been empirically proven to be an important factor of maps readability
 - Brychtova, A. and Coltekin, A. (2015), "Discriminating classes of sequential and qualitative colour schemes", International Journal of Cartography, Vol. 1 No. 1, pp. 62–78, doi: 10.1080/23729333.2015.1055643
 - Brychtova, A. (2015), Modern Trends in Cartography, (Brus, J., Vondráková, A. and Voženílek, V.,Eds.)Modern Trends in Cartography: Selected Papers of CARTOCON 2014, Lecture No., doi:10.1007/978-3-319-07926-4.
 - Brychtova, A. and Coltekin, A. (2014), "An Empirical User Study for Measuring the Influence of Colour Distance and Font Size in Map Reading Using Eye Tracking", The Cartographic Journal, doi: 10.1179/1743277414Y.0000000103
 - Brychtová, A. a Vondráková, A. (2014), "Green versus Red: Eye-tracking evaluation of sequential colour schemes", SGEM 2014 Informatics, Geoinformatics and Remote Sensing Proceedings Volume III, STEF92 Technology Ltd., Sofia, Bulgaria, p. 8., doi: 10.5593/SGEM2014/B23/S11.082

- On-line tool for designing sequential color schemes
- The user can define
 - Number of classes (shades)
 - The leading color of the scheme
 - Color distance steps between shades,
 CIEDE2000 formula

http://eyetracking.upol.cz/color

How it works...

Input variables:

- 1. First color of the sequantial scheme A_1
- 2. Auxiliary color A₀
- 3. Number of classes (shades) of the sequential scheme n,
- 4. n-1 values of color distance ΔE_{00} between adjacent shades of the sequential scheme A_i a A_{i+1} , $\forall i \in \{1, ..., n-1\}$

How it works...

where k_L , k_C a k_H are parametric coefficients adjusting the equation according to observer environment, S_L , S_C a S_H are weighting coefficients for brightness, saturation and hue respectively, and R_T rotary factor adjusting the variation in the blue region

where R_{lin} , G_{lin} , B_{lin} are values after reverse gamma correction and they assumes values from the interval (0; 1), input coordinates sRGB [R, G, B] assumes values from the interval (0; 1) as well.

How it works...

$$A_i = (a_i, b_i, L_i)$$

$$A_{i+1} = (a_{i+1}, b_{i+1}, L_{i+1})$$

$$A_{i+1} = A_i + \boldsymbol{u}t_i, \forall i \in {1, \ldots, n-1}$$

where

$$L_{i+1}=L_i+u_1t_i,$$

$$a_{i+1}=a_i+u_2t_i,$$

$$b_{i+1}=b_i+u_3t_i,$$

$$t\in\mathbb{R}^+, \forall i\in\{1,\dots,n-1\}.$$

$$\begin{split} C_{\mathbf{i},ab} &= \sqrt{(a_{\mathbf{i}})^2 + (b_{\mathbf{i}})^2} \qquad C_{\mathbf{i}+1,ab} = \sqrt{(a_{\mathbf{i}} + u_2 t_{\mathbf{i}})^2 + (b_{\mathbf{i}} + u_3 t_{\mathbf{i}})^2} \\ \bar{C}_{ab} &= \frac{c_{\mathbf{i},ab} + c_{\mathbf{i}+1,ab}}{2} \\ G &= 0.5 \left(1 - \sqrt{\frac{c_{ab}^{-7}}{\bar{c}_{ab}^{-7} + 25^7}} \right) \\ a_{\mathbf{i}}' &= (1+G)a_{\mathbf{i}} \qquad a_{\mathbf{i}+1}' = (1+G)(a_{\mathbf{i}} + u_2 t) \\ C_{\mathbf{i}}' &= \sqrt{(a_{\mathbf{i}}')^2 + (b_{\mathbf{i}})^2} \qquad C_{\mathbf{i}+1}' = \sqrt{(a_{\mathbf{i}}')^2 + (b_2)^2} \\ h_{\mathbf{i}}' &= \operatorname{atan} 2(b_{\mathbf{i}}, a_{\mathbf{i}}') \operatorname{mod} 360^{\circ} \ h_{\mathbf{i}+1}' = \operatorname{atan} 2(b_{\mathbf{i}+1}, a_{\mathbf{i}+1}') \operatorname{mod} (h_{\mathbf{i}}' - 180^{\circ}|h_{\mathbf{i}}' + 180^{\circ}) \\ \operatorname{where} x \operatorname{mod} (a|b) &= a + (x-a) \operatorname{mod} (b-a) \end{split}$$

$$\Delta L' &= -u_{\mathbf{i}}t \\ \Delta C' &= C_{\mathbf{i}+1}' - C_{\mathbf{i}}' \\ \Delta h' &= h_{\mathbf{i}+1}' - h_{\mathbf{i}}' \\ \Delta H' &= 2\sqrt{C_{\mathbf{i}}'} \overline{C_{\mathbf{i}+1}'} \sin\left(\frac{\Delta h'}{2}\right) \\ \overline{L}' &= L_{\mathbf{i}} + \frac{u_{\mathbf{i}}t}{2} \\ \overline{C}' &= \frac{c_{\mathbf{i}}' + c_{\mathbf{i}+1}'}{2} \\ \overline{C}' &= \frac{c_{\mathbf{i}}' + c_{\mathbf{i}+1}'}{2} \end{split}$$

$$\begin{split} & \overline{h}' = \frac{h_{i}' + h_{i+1}'}{2} \\ & T = 1 - 0.17\cos(\overline{h}' - 30^{\circ}) + 0.24\cos(2\overline{h}') + 0.32\cos(3\overline{h}' + 6^{\circ}) - 0.2\cos(4\overline{h}' - 63^{\circ}) \\ & \Delta\theta = 30e^{-\left(\frac{\overline{h}' - 275^{\circ}}{25}\right)^{2}} \\ & R_{C} = 2\sqrt{\frac{\overline{C_{ab}^{*}}^{7}}{\overline{C_{ab}^{*}}^{7} + 25^{7}}} \\ & S_{L} = 1 + \frac{0.015(\overline{L}' - 50)^{2}}{\sqrt{20 + (\overline{L}' - 50)^{2}}} \\ & S_{C} = 1 + 0.0045\overline{C}' \\ & S_{H} = 1 + 0.015\overline{C}'T \\ & R_{T} = -\sin(2\Delta\theta)R_{C} \\ & \Delta E_{00}(A_{i}, A_{i+1}) = \sqrt{\left(\frac{\Delta L'}{k_{L}S_{L}}\right)^{2} + \left(\frac{\Delta C'}{k_{C}S_{C}}\right)^{2} + \left(\frac{\Delta H'}{k_{H}S_{H}}\right)^{2} + R_{T}\left(\frac{\Delta C'}{k_{C}S_{C}}\right)\left(\frac{\Delta H'}{k_{H}S_{H}}\right)} \end{split}$$

where

$$atan 2(y,x) = \begin{cases} tan^{-1} \left(\frac{y}{x}\right), & y > 0, x \ge 0 \\ tan^{-1} \left(\frac{y}{x}\right) + 180^{\circ}, & x < 0 \\ tan^{-1} \left(\frac{y}{x}\right) + 360^{\circ}, & y > 0, x < 0 \\ 90^{\circ}, & y = 0, x > 0 \\ 270^{\circ}, & y = 0, x < 0 \\ 0^{\circ}, & y = 0, x = 0 \end{cases}$$

and $x \mod n = x - \left| \frac{x}{m} \right| \cdot m$, where $\left| \frac{x}{m} \right|$ denotes the entire lower part of the value $\frac{x}{m}$, $m \in \mathbb{Z}$.

- Transformed to CIELAB, the set of possible sRGB colors forms a non-convex shape
- There could exist inner points of the line segment $|A_1A_0|$, which lie outside the sRGB color space

If $(R_i < 0 \text{ or } R_i > 255) \text{ or } (G_i < 0 \text{ or } G_i > 255) \text{ or } (B_i < 0 \text{ or } B_i > 255)) \text{ then}$

If
$$(\Delta E_{00}(A_1, A_i) < \Delta E_{00}(A_1, A_0))$$
 then

If
$$(R_i < 0)$$
 then $R_i = 0$

If
$$(R_i > 255)$$
 then $R_i = 255$

If
$$(G_i < 0)$$
 then $G_i = 0$

If
$$(G_i > 255)$$
 then $G_i = 255$

If
$$(B_i < 0)$$
 then $B_i = 0$

If
$$(B_i > 255)$$
 then $B_i = 255$

terminate computation

where i ∈ {2, ..., n − 1}

- Between sRGB and CIELAB color spaces doesn't exist any one-to-one correspondence
- The line defined by the user could run away of the space sRGB

If
$$(R_i < 0 \text{ or } R_i > 255) \text{ or } (G_i < 0 \text{ or } G_i > 255) \text{ or } (B_i < 0 \text{ or } B_i > 255) \text{ then}$$

If
$$(\Delta E_{00}(A_1, A_i) < \Delta E_{00}(A_1, A_0))$$
 then

If
$$(R_i < 0)$$
 then $R_i = 0$

If $(R_i > 255)$ then $R_i = 255$

If $(G_i < 0)$ then $G_i = 0$

If $(G_i > 255)$ then $G_i = 255$

If $(B_i < 0)$ then $B_i = 0$

If $(B_i > 255)$ then $B_i = 255$

else

terminate computation

where i ∈ {2, ..., n − 1}

Sequential Color Scheme Generator 1.0 vs ColorBrewer 2.0

- Users can set all parameters of the color scheme without any limits
- Users have to understand colors a bit ©
- The user interface is imperfect and complicated (look forward the v2!)
- Based on research of map users color distance perception

Future plans

 Implement computations in various color spaces (especially for printing – FOGRA39)

Coated FOGRA 39 vs. sRGB

Future plans

easier creation of divergent and multi-hue sequential color schemes

A. Brychtová & J. Doležalová 🐧 Designing Usable Sequential Color Schemes for Geovisualizations | 1st ICA European Symposium on Cartography