

Towards Better Urban Travel Time Estimates Using Street Network Centrality

Anita Graser, Maximilian Leodolter & Hannes Koller

Problem Statement

We want to:

- 1. Predict travel time / speed on a certain road at a certain time
- 2. Where we don't have measurements
- 3. Using only street network data NO travel demand data

Travel Time Prediction

Usual approaches:

- Sensor measurements
- Traffic model
- Fallback: Speed limit × correction factor

Centrality

1. Closeness: "Central" ← → "Peripheral"

How far is it to all other network nodes?

2. Betweenness: "Important" $\leftarrow \rightarrow$ "Unimportant"

How often is this location on the shortest paths between network nodes?

• •

Linear Regression Model

Standard linear ordinary least square (OLS) regression model

$$Y = X\beta + \varepsilon$$

where

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

Estimators:

$$\widehat{y_{t,f}} = \beta_t + \beta_{f,s} \cdot s + \beta_{f,b} \cdot b + \beta_{f,c} \cdot c + \beta_{f,bc} \cdot b \cdot c$$

Where

- Y ... Speed records
- X ... Model matrix (daytime t, frc f, betweenness b, closeness c, speed limit s)
- $\hat{\beta}$... stacked vector of

OLS estimates β_t , $\beta_{f,s}$, ...

- b ... betweenness
- c ... closeness
- s ... speed limit
- ε … Residual

Centrality Model Parameters

 $\widehat{y_{t,f}} = \beta_t + \beta_{f,s} \cdot s + \beta_{f,b} \cdot b + \beta_{f,c} \cdot c + \beta_{f,bc} \cdot b \cdot c$

Result1: Improved Coverage of Estimators

Interpretation of Results

1. Base model

- 2. 1st extension using global centrality
- 3. 2nd extension using local centrality

Difference between

Global & Local Centrality

20

Model Performance Summary

Contact

Anita Graser

- anita.graser@ait.ac.at
- @underdarkGIS