Mapping Opportunities for Enhancing Effectiveness of Health Care System by GIS Based Accessibility Analyses

Locating Core and Support Services within Long Distances in Northern Finland

1st ICA European Symposium on Cartography, Vienna, Austria, November, 10-12, 2015.

Ossi Kotavaara (PhD), Tommi Hakkarainen (MSc), Tiina Huotari (MSc), Timo Keistinen* (Ministerial Counsellor) & Jarmo Rusanen (Prof)

> Department of Geography, University of Oulu, Finland *Ministry of Social Affairs and Health, Finland

http://eurocarto.org/wp-content/uploads/2015/10/2-11.pdf

STUDY HAS A CONNECTION WITH

Transport geography Geographic information systems (GIS) Accessibility analysis Cartography Logistics Operations research

MEASURING ACCESSIBILITY

"Accessibility... ... is the extent to which the land-use transport system enables (groups of) individuals or goods to reach activities or destinations by means of a (combination of) transport mode(s)." Geurs & Ritseman van Eck (2001: 19)

HEALTH CARE WITHIN LONG DISTANCES AND LOW DEMAND

- There is pressure to reorganize Finnish healthcare services.
- Upper level coordination.Peripheral areas having
- decreasing and aging populations are challenging for effective health care.
- Healthy support services -project
 Effective, user-centered and
 - scalable support service models in long distance health care systemsWP 4: Accessibility, long distance
 - and location-allocation
 - Partners: Oulu Business School and Industrial Engineering and Management, University of OuluMain funding: TEKES, Finnish
 - Funding Agency for Innovation

University of Oulu / Department of Geography / Geoinformatics / Ossi Kotavaara

HEALTH CARE WITHIN LONG DISTANCES AND LOW DEMAND

Aim is to find ways to develop the health care system more efficient by two accessibility based approaches 1. Reduce the number of health

- centers in less harmful order by using location-allocation methods
- Considering (spatial aspects of) opportunities for centralized warehousing functions by comparing effectiveness of potential sites by delivery route 2. scenarios.

Data for GIS based analysis

- Population grid cell dáta
 Statistics Finland
- Health care facilities: hospitals and health centers
 - THL, geocoding
- Road network data
 - Finnish road administration

University of Oulu / Department of Geography / Geoinformatics / Ossi Kotavaara

EXAMPLE OF NETWORK DATA INCLUDING TRAVEL SPEED ESTIMATES (KM/H)

ACCESSIBILITY TO BASIC HEALTH CARE

Travel time threshold	Share of population (%)				
(minutes)	52	62	72	82	92
10	69.5	73.4	75.9	77.4	78.4
20	89.2	91.4	92.8	94.0	94.4
30	96.3	97.1	97.5	99.7	99.7
45	98.9	99.4	99.4	99.5	99.5
60	99.6	99.8	99.8	99.8	99.8
90	99.9	99.9	99.9	99.9	100

University of Oulu / Department of Geography / Geoinformatics / Ossi Kotavaara

LOCATION-ALLOCATION OF FACILITIES BY ACCESSIBILITY

Travel time threshold	Share of population (%))
(minutes)	52	62	72	82	92
10	69.5	73.4	75.9	77.4	78.4
20	89.2	91.4	92.8	94.0	94.4
30	96.3	97.1	97.5	99.7	99.7
45	98.9	99.4	99.4	99.5	99.5
60	99.6	99.8	99.8	99.8	99.8
90	99.9	99.9	99.9	99.9	100

(P-median i.e. minimize impedance approach is used. The analysis maximizes the average accessibility of population, as the travel time sum of population to health centers is minimized.)

EFFECT TO TRAVEL TIME

Travel time threshold	Share of population (%)				
(minutes)	52	62	72	82	92
10	69.5	73.4	75.9	77.4	78.4
20	89.2	91.4	92.8	94.0	94.4
30	96.3	97.1	97.5	99.7	99.7
45	98.9	99.4	99.4	99.5	99.5
60	99.6	99.8	99.8	99.8	99.8
90	99.9	99.9	99.9	99.9	100

University of Oulu / Department of Geography / Geoinformatics / Ossi Kotavaara

University of Oulu / Department of Geography / Geoinformatics / Ossi Kotavaara

OPTIMIZING LOCATION(S) FOR WAREHOUSE(S) BY DELIVERY ROUTE SCENARIOS FOR ONE OR MORE SITES

- Establishing GIS based delivery route scenarios for all potential combinations in locating one or more warehouses
- in locating one or more warehouses
 Number of combinations for locating warehouses is X = 2^{sites} -1
- Maximum number of routes is defined
- Routes are based on sub-optimal heuristic solution (a tabu search metaheuristics)

N of sites / Number of potential combinations

- 2 / 3 3 / 7
- 4 / 15
- 5 / 31
- 6 / 63
- 10 / 1 023
- 15 / 32 767
 20 / 1 048 575

Sites = 2	Sites = 5	10001
AB	ABCDE	10010
01	00001	10100
10	00010	10101
11	00011	10110
	00100	10111
Sites $= 3$	00101	11000
	00110	11001
ABC	00111	11010
001	01000	11011
010	01001	11100
011	01010	11101
100	01011	11110
101	01100	11111
110	01101	
111	01110	
	01111	
	10000	

ENHANCED ANALYSIS WITH WEIGHTED ROUTING INCLUDING EFFICIENCY TESTING AND GREEDY HEURISTICS

Parameters for computation:

- Maximum number of delivery routes for each warehouse - 5 routes.
- Maximum travel time of each route - 9 h.
- Start and stops 10 min.
- Optimizing efficiency of each route
 - Minimum efficiency max travel time for 1 m³ is 120 min.
 - heuristic improvements faster computation.
- Minimum coverage threshold of route setting - 90 % of highest potential volume m³.

DELIVERY ROUTE SCENARIOS: TWO WAREHOUSES AND SIX POTENTIAL SITES

Reached health	Troval time (b)	Sites					
centres (of 92)	fraver time (fr)	Kokkola	Rovaniemi	Kemi	Oulainen	Kajaani	Oulu
91	92,4	0	1	0	0	0	1
91	92,9	0	1	0	1	0	0
91	104,7	0	1	0	0	1	0
90	114,0	1	1	0	0	0	0
88	86,1	0	0	1	1	0	0
88	91,4	0	0	1	0	0	1
88	100,7	0	0	1	0	1	0
87	98,3	1	0	1	0	0	0
87	129,2	0	1	1	0	0	0
83	78,8	1	0	0	0	0	1
83	81,2	0	0	0	1	0	1
83	82,7	0	0	0	0	1	1
79	73,9	0	0	0	1	1	0
79	83,3	1	0	0	1	0	0
78	84,4	1	0	0	0	1	0

MAJORITY OF HEALTH CENTERS IN NORTH FINLAND MAY BE REACHED EFFECTIVELY BY CENTRALIZED WAREHOUSING FUNCTIONS

Number of	Total driving	N of accessed
warehouses	time (hours)	health centers
1	74,7	80
2	92,4	91
3	85,6	91
4	83,3	91
5	81,3	91
6	80,8	91

University of Oulu / Department of Geography / Geoinformatics / Ossi Kotavaara

ACCESSIBILITY SCENARIOS WITH 1-6 HUBS AND 52-92 HEALTH CENTERS

Number of		Number of health centers					
warehouses		(hours total driving time / accessed health centers)					
	52	62	72	82	92		
1	67,7 / 47	65,4 / 54	73,1 / 64	72,4 / 72	74,7 / 80		
2	61,4 / 51	73 / 61	79,3 / 71	82,1 / 81	92,4 / 91		
3	55,2 / 51	65,3 / 61	70,6 / 71	75,5 / 81	85,6 / 91		
4	53,5 / 51	64,8 / 61	69,2 / 71	72,5 / 81	83,3 / 91		
5	51,8 / 51	63,6 / 61	66,1 / 71	72,1 / 81	81,3 / 91		
6	52 / 51	63 / 61	66,7 / 71	70,5 / 81	80,8 / 91		

CONCLUSIONS AND OPENINGS FOR DISCUSSION

- Number of health centers is possible to be reduced by 10 to 20 and "damage" to accessibility does not increase radically.
- Majority of health centers in North Finland may be reached effectively by "milk route" based deliveries from two centralized warehouses
- Improvements to the study since submitting the conference paper
 - Delivery routes: wan-speed -> truck-speed.
 - Route generation: forced deliveries -> cost-effectiveness
- How different route solving algorithms form routes?
 - ArgGIS Vehicle Route Problem tool uses tabu search metaheuristics
 - -> enhanced potential solution fast sub-optimal solution.

THANK YOU!

Contact information: Ossi Kotavaara Project manager, PhD Department of Geography University of Oulu ossi.kotavaara@oulu.fi +358 29 448 7852 / +358 40 727 3618 http://www.oulu.fi/geography/personnel/kotavaara-ossi

