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Abstract 
 
The paper starts with the description of Mollweide's life and work. The formula or equation in 
mathematics known after him as Mollweide's formula is shown, as well as its proof "without 
words". Then, the Mollweide map projection is defined and formulas derived in different 
ways to show several possibilities that lead to the same result. A generalization of Mollweide 
projection is derived enabling to obtain a pseudocylindrical equal-area projection having the 
overall shape of an ellipse with any prescribed ratio of its semiaxes. The inverse equations of 
Mollweide projection has been derived, as well. 
 
The most important part in research of any map projection is distortion distribution. That 
means that the paper continues with the formulas and images enabling us to get some filling 
about the liner and angular distortion of the Mollweide projection. 
 
Finally, the ICA logo is used as an example of nice application of the Mollweide projection. 
A small warning is put on the map painted on the ICA flag. It seams that the map is not 
produced according to the Mollweide projection and is different from the ICA logo map. 
 
Keywords: Mollweide, Mollweide's formula, Mollweide map projection, ICA logo 
 
1. Introduction 
 
Pseudocylindrical map projections have in common straight parallel lines of latitude and 
curved meridians. Until the 19th century the only pseudocylindrical projection with important 
properties was the sinusoidal or Sanson-Flamsteed. The sinusoidal has equally spaced 
parallels of latitude, true scale along parallels, and equivalency or equal-area. As a world map, 
it has disadvantage of high shear at latitudes near the poles, especially those farthest from the 
central meridian. 
 
In 1805, Karl Brandan Mollweide (1774–1825) announced an equal-area world map 
projection that is aesthetically more pleasing than the sinusoidal because the world is placed 
in an ellipse with axes in a 2:1 ratio and all the meridians are equally spaced semiellipses. The 
Mollweide projection was the only new pseudocylindrical projection of the nineteenth century 
to receive much more than academic interest (Snyder, 1993).  
 
2. Karl Brandan Mollweide 
 
Karl Mollweide was born and brought up in Wolfenbüttel about 15 km south of Brunswick 
(which today is the city of Braunschweig) in 1774. Unlike most people who become leading 
mathematicians, Mollweide showed no interest in or talent for the subject while in elementary 
school. His interest came about very suddenly when he was twelve years old and seems to 
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have occurred when he discovered some old mathematics books in his home and began 
reading them. From these books he taught himself calculus and then progressed to the study 
of algebra. When he was fourteen years old he put his new mathematical skills into practice 
and calculated the occurrence of an eclipse. This made his mathematical skills more widely 
known, and his teacher at the gymnasium, Christian Leiste, realised that his pupil was 
extremely talented (URL1). 
 
With a love of mathematics and a considerable talent for the subject, it was natural that 
Mollweide would want to study the subject to a higher level. He entered the University of 
Helmstedt where he was taught by Johann Friedrich Pfaff. Pfaff had much in common with 
Mollweide for both had studied mathematics largely on their own. Both had, in addition to a 
deep love of mathematics, an interest in applying it to astronomy. Mollweide entered the 
University of Helmstedt in 1793 and spent three years studying there. Pfaff was an excellent 
teacher and at that time was working hard to build up a flourishing mathematics department 
so Mollweide was happy to be offered a teaching position at the university following his 
undergraduate studies. However, despite Pfaff's hard work in building up mathematics 
department, the University of Helmstedt was by this time under threat of closure. This was 
not the only problem faced by the new lecturer Mollweide for he was suffering severe health 
problems (probably caused by depression) which forced him to give up his position at 
Helmstedt after about a year and return to his home. 
 
Back home Mollweide took it easy and spent the next two years essentially taking a 
prolonged rest. By this time his health improved sufficiently for him to consider accepting an 
offer of a professorship of mathematics and astronomy at the University of Halle. He decided 
that his health was now good enough for him to accept the professorship and he took up the 
position in 1800. He spent eleven years at Halle and it was during this period that he did the 
two pieces of work for which he is mostly remembered today. 
 
The first of these was his invention of the Mollweide pseudocylindrical projection of the 
sphere. The second piece of work to which Mollweide's name is attached today is the 
Mollweide equations which are sometimes called Mollweide's formulas. 
 
In 1811 Mollweide left Halle when he was named Professor of Astronomy at the University 
of Leipzig. He immediately had an important influence of one of the first students he taught at 
Leipzig, namely August Möbius. At this time Möbius was intending to make a career as an 
astronomer but after being taught by Mollweide he became, like his teacher, equally interested 
in both mathematics and astronomy. As well as being Professor of Astronomy at Leipzig, 
Mollweide was also director of the university observatory. However, times were difficult 
because of wars which affected the district. After Napoleon withdrew his armies from Russia 
in 1812 he began a new offensive against the German states. However his armies failed in 
their attempt to capture Berlin and retreated to the west. Napoleon's lines of communication 
were through Leipzig and the allies concentrated their attacks on that point in October 1813. 
The resulting Battle of Leipzig took place from 16th to 19th October and saw a major defeat 
for Napoleon. All this concentration on war had made Mollweide's life extremely difficult for 
he was forced to concentrate on geographic studies to assist the war effort. On top of this, 
money had to be diverted to the war effort and so Leipzig Observatory received very little 
funding and could not carry out a proper astronomical research programme. 
 
Mollweide, always more enthusiastic towards mathematics than astronomy, decided in 1814 
to move from being Professor of Astronomy to Professor of Mathematics, still at the 
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University of Leipzig. Certainly the problems in carrying out his duties as Professor of 
Astronomy had been a big factor in his decision. The chair of astronomy at Leipzig which he 
vacated was filled by Möbius two years later. The year of 1814 not only marked Mollweide's 
move from astronomy to mathematics, but it was also the year he married. His wife was the 
widow of the astronomer Meissner, who had worked at Leipzig Observatory. From 1820 to 
1823 Mollweide was Dean of the Leipzig University Faculty of Philosophy. 
 
We referred above to the two contributions for which Mollweide is best remembered today. 
However he made many other minor contributions published in the Zach's Monatliche 
Correspondenz (1802–13), in the Zeitsrchrifte für Astronomie (1816–17), in the Gilbert's 
Annalen der Physik (1804–23), and in the Astronomische Nachrichten (1824–25). Among his 
other works we mention two published while he was working in Halle: Prüfung der 
Farbenlehre des Hernn von Goethe (1810), and Darstellung der optischen Irrthümer in Herrn 
von Goethe's Farbenlehre on a similar topic, which he published in the following year. After 
moving to Leipzig he published: Commentationes mathematico-philologicae tres (1813); De 
Quadratis Magicis Commentatio (1816) on magic squares (the first book on the topic not to 
contain any mysticism); and Adversus grairssimos chronologio myslicae autores (1821). He 
was also the editor of Euklid's Elements. 
 
Wu says that Mollweide's health problems were basically caused by depression, making him a 
hypochondriac, and this made him appear standoffish. However, when one got to know him 
well, one realised what a kind and considerate man he was:  
As a teacher, he tried with his full heart to promote the study of science and mathematics. 
Anyone who expressed interest in these topics received his support. ... he was loved by those 
who knew him well; deep down he was truly kind and always wanted only the best for science 
and mathematics. Mollweide was admired as a lecturer because of his ability to present dry 
topics in an interesting manner by drawing connections to other topics. He was also known 
for his penmanship; his ability to draw a "perfect" circle freehand amazed his students. 
 
Among his other mathematical accomplishments, Wu mentions:  
Mollweide demonstrated various talents as a mathematician. He was feared as a proofreader 
for his ability to easily detect and harshly criticize the smallest flaw in papers. Although he 
did not discover any completely new mathematical methods, he was admired for thoroughly 
investigating and extending known methods. Among his mathematical contributions, 
Mollweide was the first to use the modern congruence symbol in the 1824 edition of Lorenz's 
German translation of 'Euklid's Elemente'. He also took over the work on the mathematical 
dictionary, 'Mathematisches Wörterbuch', from Georg Simon Klügel, but only published one 
volume in 1823 prior to his death. 
 
3. Mollweide's Formulas 
 
In trigonometry, Mollweide's formula, sometimes referred to in older texts as Mollweide's 
equations, named after Karl Mollweide, is a set of two relationships between sides and angles 
in a triangle. It can be used to check solutions of triangles. 
 
Let a, b, and c be the lengths of the three sides of a triangle. Let α, β, and γ be the measures of 
the angles opposite those three sides respectively. Mollweide's formulas state that 
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Each of these identities uses all six parts of the triangle — the three angles and the lengths of 
the three sides. 
 
These trigonometric identities appear in Mollweide's paper Zusätze zur ebenen und 
sphärischen Trigonometrie (1808). A proof of these identities and an interesting discussion 
concerning them is given in Wu and a proof without words (see Fig. 1) in DeKleine (1988) 
and Nelsen (1993).  
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Fig. 1. Mollweide equations – Proof without Words. According DeKleine (1988). 
 
One of the more puzzling aspects is why these equations should have become known as the 
Mollweide equations since in the 1808 paper in which they appear Mollweide refers the book 
by Antonio Cagnoli (1743–1816) Traité de Trigonométrie Rectiligne et Sphérique, Contenant 
des Méthodes et des Formules Nouvelles, avec des Applications à la Plupart des Problêmes 
de l'astronomie (1786) which contains the formulas. However, the formulas go back to Isaac 
Newton, or even earlier, but there is no doubt that Mollweide's discovery was made 
independently of this earlier work (URL1).  
 
4. Mollweide Map Projection Equations 
 
Pseudocylindrical map projections have in common straight parallel lines of latitude and 
curved meridians. Until the 19th century the only pseudocylindrical projection with important 
properties was the sinusoidal or Sanson-Flamsteed. The sinusoidal has equally spaced 
parallels of latitude, true scale along parallels, and equivalency or equal-area. As a world map, 
it has disadvantage of high distortion at latitudes near the poles, especially those farthest from 
the central meridian (Fig. 2). 
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Fig. 2. Sanson or Sanson-Flamsteed or Sinusoidal projection 
 
In 1805, Mollweide announced an equal-area world map projection that is aesthetically more 
pleasing than the sinusoidal because the world is placed in an ellipse with axes in a 2:1 ratio 
and all the meridians are equally spaced semiellipses. The Mollweide projection was the only 
new pseudocylindrical projection of the nineteenth century to receive much more than 
academic interest (Fig. 3). 
 

 
 
Fig. 3. Mollweide projection 
 
Mollweide presented his projection in response to a new globular projection of a hemisphere, 
described by Georg Gottlieb Schmidt (1768–1837) in 1803 and having the same arrangement 
of equidistant semiellipses for meridians. But Schmidt's curved parallels do not provide the 
equal-area property that Mollweide obtained (Snyder, 1993). 
 
O'Connor and Robertson (URL1) stated that Mollweide produced the map projection to 
correct the distortions in the Mercator projection, first used by Gerardus Mercator in 1569. 
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While the Mercator projection is well adapted for sea charts, its very great exaggeration of 
land areas in high latitudes makes it unsuitable for most other purposes. In the Mercator 
projection the angles of intersection between the parallels and meridians, and the general 
configuration of the land, are preserved but as a consequence areas and distances are 
increasingly exaggerated as one moves away from the equator. To correct these defects, 
Mollweide drew his elliptical projection; but in preserving the correct relation between the 
areas he was compelled to sacrifice configuration and angular measurement.  
 
The Mollweide projection lay relatively dormant until J. Babinet reintroduced it in 1857 under 
the name homalographic. The projection has been also called the Babinet, homalographic, 
homolographic and elliptical projection. It is discussed in many articles, see for example 
Boggs (1929), Close (1929), Feeman (2000), Philbrick (1953), Reeves (1904) and Snyder 
(1977) and books or textbooks by Fiala (1957), Graur (1956), Kavrajskij (1960), Kuntz 
(1990), Maling (1980), Snyder (1987, 1993), Solov'ev (1946) and Wagner (1949). 
 
The well known equations of the Mollweide projections read as follows: 
 

2 sinx R         (4.1) 

2 2
cosy R 


       (4.2) 

2 sin 2 sin      .      (4.3) 
 
In these formulas x  and  are rectangular coordinates in the plane of projection,  and y    
are geographic coordinates of the points on the sphere and R is the radius of the sphere to be 
mapped. The angle   is an auxiliary angle that is connected with the latitude  by the 
relation (4.3). For given latitude , the equation (4.3) is a transcendental equation in . In 
the past, it was solving by using tables and interpolation method. In our days, it is usually 
solved by using some iterative numerical method, like bisection or Newton-Raphson m


 

ethod. 
 
4.1. First approach 
 
A half of the sphere with the radius R should be mapped onto the disk with the radius   
(adopted from Borčić, 1955). If we request that the area of the hemisphere is equal to the area 
of the disk, than there is the following relation: 
 

2 22R            (4.4) 
 
from where we have 
 

2R  .       (4.5) 
 

Let the circle having the radius  be the image of the meridians with the longitudes 
2


   . 

From Fig. 4 we see that the rectangular coordinates 0x  and 0y  of any point  belonging to 

this circle can be written like this: 
0T

 

0 sinx           (4.6) 
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0 cosy           (4.7) 
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Fig. 4. Derivation of Mollweide projection equations 
 
Due to the request that the projection should be pseudocylindrical, the abscise 0x x  for any 

point with the same latitude regardless of the longitude should be 
 

2 sinx R  .       (4.1) 
 
On the other hand, the ordinate y  will depend on the latitude and longitude. According to the 
equal-area condition, the following relation exists: 
 

0 :
2

y y


 :  .       (4.9) 

 
By using (4.9) and (4.5), the relation (4.7) goes into 
 

2 2
cosy R 


 .      (4.2) 

 
In order to finish the derivation, we need to find the relation between the auxiliary angle  , 

and the latitude . According to the equal-area condition, the area  should be equal to 

the area of the spherical segment between the equator and the parallel of latitude  , which is 

mapped as the straight-line segment : 
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from where we have 

.      (4.3) 
 
.2. Second approach 

iven the earth's radius R, suppose the equatorial aspect of an equal-area projection with the 

unded by an ellipse twice broader than tall  

s are semielliptical arcs 

 
2 sin 2 sin     
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G
following properties: 
 A world map is bo
 Parallels map into parallel straight lines with uniform scale 
 The central meridian is a straight standard line; all other one
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Fig. 5. Second approach to derivation of Mollweide projection equations 

uppose an earth-sized map; let us define two regions, S1 on the map and S2 on the earth, both 

quation of ellipse centred in origin, major axis on y-axis: 

 
S
bounded by the equator and a parallel (URL2). The equal-area property can be used to 
calculate x for given φ. Given x and λ, y can be calculated immediately from the ellipse 
equation, since horizontal scale is constant. 
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n a sphere, the area between the equator and parallel 
 

O  is 

 


      (4.3) 
 

he auxiliary angle  must be found by interpolation or successive approximation. 
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Finally, since horizontal scale is uniform, and 24ab R   , 2b a  and 2a R  we have 
 

2 sinx R         (4.1) 
Due to the relation 
 

2 2: :
b

y a x
a

     

2 2 2 2 22
2 2 2 2 siny R x R R

 
   

 
 

2 2 cosy R


 


       (4.2). 

 
.3. Third approach 

rom the theory of map projections we know that general equations of pseudocylindrical 

4
 
F
projections have the form: 
 

( )x x         (4.10) 

 
urthermore, for equal-area pseudocylindrical projection holds 

( ,y y  )        (4.11) 

F
 

2 cosR
y

dx

d


 



.      (4.12) 

 

9 



Let us suppose that a half of the sphere have to be mapped onto a disc with the boundary  

2 . 
 

 order to have an equal-area mapping of the half of the sphere with the radius 

 
2 2x y  

RIn  onto a disc 

 
om where 

with the radius   we should have 
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hat is a differential equation that could be solved by the method of separation of variables: T

 
2 2 22 2R cosx dx R d      

 
here the sign + has been chosen. 

fter integration we can get 

w
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y the appropriate substitution in the integral on the left side, or just looking to any B

mathematical manual we can get the following: 
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Therefore we have 
 

2 2 2 22 2 arcsin sin
2

x
x R x R R

R
     .   (4.13) 

 
y substitution B

 

2 sinx R         (4.1) 
 

.13) goes to 

      (4.3) 
 

hile (4.12) can be written as 

(4
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emark 1 

e applied condition was that a half of the sphere has to be mapped onto a disc, the 

emark 2 
s, the Mollweide projection is always defined by equations (4.1)–(4.3), which 

e 

emark 3 
 applied in this chapter can be applied in derivation of other pseudocylindrical 

ea 

. Generalization of Mollweide Projection 

 the 

R
Although th
final projection equations hold for the whole sphere and give its image situated into an ellipse. 
 
R
In reference
means by using an auxiliary angle or parameter. My equation (4.13) shows that there is no 
need to use any auxiliary parameter. There exists the direct relation between the x-coordinat
and the latitude  . 
 
R
The method
projections, as are e.g. Sanson projection, Collignon projection or even cylindrical equal-ar
projection. 
 
5
 

et us consider the shape of the Mollweide projection of the whole sphere. FromL
equations  
 

2 sinx R         (4.1) 

2 2 cos        (4.2). y R




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by elimination of  it is easy to obtain the equation of a meridian in the projection 
 

2 2

1
2 2 2
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 is obvious that for a given  (5.1) is the equation of an ellipse, i.e. it has a form It  
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 follows that the semiaxis a is constant, while b depends on the longitude . If we take It 
   , than 2 2b R , and  
 

2 .       (5.2) 
 
nd that is the ratio of semiaxes in the Mollweide projection. The question arises: is it 

ord in 

he answer is yes, and we are going to proof it. Let us denote

: 1:a b

a
possible to find out a pseudocylindrical equal-area projection that will give the whole w
an arbitrary ellipse satisfying any given ratio :a b  or :b a ?  
 

:b a T . 

irst of all, the area of an ellipse with the semiaxes  and 
 

a b a F  should be equal to the area 
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his is equivalent with 

of the whole sphere: 
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a
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a
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ow, the equation of the ellipse with the centre in the origin and with the semiaxes  and N a b  

reads 
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a b
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y using (5.3), (5.4) goes into b
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
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 2 2 2 2y a x   .      (5.5) 

Furthermore, the 
y 

 
projection should be cylindrical and equal-area, which is generally expressed 
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2 cosR
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If we substitute (4.12) into (5.5), taking into account that    , after some minor 

ansformation we can get the following differential equation with separated variables tr
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Integral of the left side of th e right side we need 
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s

The application of the trigonometric identity 

e equation is elementary, while for that on th
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This lead  to the equation 
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2 1 cos 2
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give us the following differential equation that is ready for integration: 

ter integration, we obtain 

    (5.8) 

C is integration co

 
cos 2(1 cos 2 )d d       . 

 
Af
 

sin 2 sin 2 C       , 
 
where nstant. By using the natural conditions 0  , x

inal form of (5.8) is again the known relation 
0  and  we 

btain . In that way, the f

 (5.6) and (5.7)

0 
o  0C 
 
2 sin 2 sin      .      (4.3) 
 
From  we have 
 

2

2 2

cos cosdx a a   
   

d 4cos4 a x 
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and taking into account (4.12) 
 

24
cos cos

R
y a

a


      

 
2 cosR


 


,  (5.9) 

 
while 
 

2
six a n sin

R
  


.     (5.10) 

 
Let us summarize: 
 

2
sin

R
x  


.       (5.11) 

2 cos .      (5.12) y R


 


.      (4.3) 
 
These are equations an ellipse of any 

 th e have a bounding circle. According to (5.3) 

2 sin 2 sin     

 defining the generalized Mollweide projection onto 
 of its semiaxes. given ratio :b a 

 
Example 1. 
Let us take at is a b , and w1  ,

2a b R  . 
 

 
 
Fig. 6. Generalized Mollweide projection onto a disc 
 
Example 2. 

et us take 2  , that is 2b a . According to (5.3) 2a R , 2 2b RL , and we are able to 
cognize the classic Mollweide projection. re
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Example 3. 
Let us define the ratio , by the condition that the linear scale along the equator equals 1. 

rom the theory of map projections it is known that the linear scale along parallels is given by F
 

cos

G
n

R



, 

 
where 
 

2 2
x y

G   

         
. 

In our case 
 

( )x x  , which means that  
 

0
x



. 

 
The condition 
 

 for 

 

n 0   1
 
oes to g

cos
y

R R


  


. 

Now, 
 

 

2
cos

Ry
R





 


 

and from there and  due to  we have 
 

 
0  0 

2

2
  , or 


4

 


. 

Finally, 

 
4R

a  b R . 


, 

4
sinx R 


cy R 

 

.      (4.3) 
 
It is easy to see that the linear scale in the direction of meridian is also 1 throughout the 
equator in this version of Mollweide projection. See also Bromley (1965). 

os  
2 sin 2 sin     
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Fig. 7. Generalized Mollweide projection without linear distortions along the equator 
 
 

. Inverse Equations of Mollweide Projection 

he inverse equations of any map projections read as follows: 

6
 
T
 

( , )x y    
( , )x y  . 

he computation of  and  from given 
 

 and y     xT in Mollweide projection is straightforward. 
In fact, for the given x  from (4.1) we can get th xiliary angle e au   
 

sin
2

x

R
         (6.1) 

 
Then, from (4.3) we have 
 

  

1
sin (2 sin 2 )    


     (6.2) 

nd from (4.2)  
 

 
a

2 2 cos

y

R


 


.      (6.3) 

. Distribution of Distortions in Mollweide Projection 
 
For the Mollweide projection given by equations rived in the 
traightforward manner: 

 
7

 (4.1)–(4.3) it can be de
s
 

2 tan
tan   


 

 



cos

2 2 cos cos

 


 
 m
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2 2 cos

cos
n




 
 

 
2 22 tan 2

2
m n


   , 

 
where 

  is defined by 

 

2


    , and  is the angle between a meridian and a parallel in the plane 

linear scale along meridian 
 is a linear scale along parallel 

 
e area  by definition. 

Th llweide projection has been investigated and represented 
in ann, 1909, Solov'ev, 1946, Graur, 
9

 para  latitude only. The linear scale along meridians 
epends both on latitude and longitude. The only standard parallels are 40°44'12"N and S. 



of projection 
 
m  is a 
n
  is a maximal angular distortion at a point. 

The scale of th  1p 
 

e distribution of distortion of Mo
 tabular and/or graphical form by several authors (Behrm
56, Fiala, 1957, Maling 1980). 1

 
The linear scale along llels depends on
d
The only two points with no distortion are the intersections of the central meridian and 
standard parallels. 
 
 

 
 
Fig. 8. The Mollweide projection with Tissot's indicatrix of deformation (URL5) 
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Fig. 9. Mollweide projection for the whole word, showing isograms for maximum angular 
deformation  at 10º, 20º, 30º, 40º and 50º. Parts of the world map where >80º are shown 
in black (Maling, 1980; Canters and Crols, 2011). 

 

 
8. Some Applications of Mollweide Projection 
 
For those who would like to research the Mollweide projection in more detail, I would 
recommend the following web-sites: URL2, URL3 and URL6. Although, do it carefully, do to 
some incorrect statements occurring on the Internet. 
 
Mollweide's projection has been extremely influential. Besides the developments by Goode 
(URL7), derived works include the interrupted Sinu-Mollweide projection by A. K. 
Philbrick's (1953), oblique maps like Bartholomew's Atlantis, and simple rescaling by 
reciprocal factors which preserve its features – e.g., making the equator a standard parallel 
free of distortion (Bromley, 1965), or making the whole map circular instead of elliptical (W. 
Tobler) as indicating in the Chapter 5.  
 
 

 
 
Fig. 10. Mollweide projection of the world (URL5) 
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Fig. 11. Oblique aspect of the Mollweide projection (Solov'ev, 1946, Kavrajskij, 1960) 
 
 
 

 
 
Fig. 12. The Atlantis Map (Bartholomew, 1948), Transversal aspect of the Mollweide 
projection (URL3) 
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Fig. 13. Inferred contours of the geoid (in metres) for the whole word, based upon Kuala's 
analysis of variations in gravity potential with both latitude and longitude (Maling 1980) 
 

 
 
Fig. 14. Sea-surface freon levels measured by the Global Ocean Data Analysis Project. 
Projected using the Mollweide projection (URL5). 
 
 

 
 
Fig. 15. The Map Room – A weblog about maps (URL8) 
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Fig. 16. Full-sky image of Cosmic Microwave Background as seen by the Wilkinson 
Microwave Anisotropy Probe (URL5). 
 
Remark 
The Mollweide and Hammer projections are occasionally confused, since they are both equal-
area and share the elliptical boundary; however, the latter design has curved parallels and is 
not pseudocylindrical. 
 
 

 
 
Fig. 17. Hammer projection (URL 9) 
 
9. ICA Logo and ICA Flag 
 

 
 
Fig. 18. ICA logo (URL4) 
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Fig. 19. ICA flag – The Mollweide projection is obviously not included 
 
10. Conclusion 
 
In preparation. 
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